Effects of dominance, body mass index and age on grip and pinch strength

Kadir Ertema,*, Mubarrem Inanb, Saim Yologlua, Nurzat Elmali, Ahmet Harma, Sükrü Sahina and Arslan Bora

aDepartment of Orthopaedics and Traumatology, Inonu University, Turgut Ozal Medical Center, Malatya, Turkey
bDepartment of Biostatistics, Inonu University, Turgut Ozal Medical Center, Malatya, Turkey

Abstract. Measurement of grip and pinch strength is an important component in hand evaluation. It assesses the patient’s initial limitations and provides a quick reassessment of patient’s progress throughout the treatment. This investigation was conducted to examine the effects of hand dominance, body mass index (BMI) and age on grip strength (GS) and pinch strength (PS) tasks. Subjects were 365 apparently healthy young male adults (19–33 years). No correlation was found between the BMI hand strength measures. Grip and pinch strength were measured instrumentally. The rule “dominant hand (DH) is approximately 10% stronger than the nondominant hand (NDH)” was found to be valid for left handed persons only (11.2%), otherwise these measures should be considered equivalent in both hands in clinical practice.

Keywords: Dynamometry, muscle strength, grip, pinch

1. Introduction

Reliable and valid evaluation of hand strength is of paramount importance in determining the effectiveness of various surgical or treatment procedures. In addition, normative data are needed to interpret evaluation data, to set realistic treatment goals, and to assess a patient’s ability to return to employment [1]. Besides, grip strength tests convenient, safe and reliable and without require large or expensive equipment [2]. Therefore, grip strength has been used as an indicator of overall muscle strength. Rantanen et al. [4] emphasized that higher strength itself may provide greater physiologic and functional reserve that protects against mortality [3,4]. Many factors including fatigue, hand dominance, age state of nutrition, pain, cooperation of the patient and presence of amputations, restricted motion, and sensory loss can influence the strength of the grip and pinch.

With increasing age, muscle strength decreases and may eventually reach a level at which weakness starts to restrict the ability to perform usual activities [5]. Ager [6] pointed out that GS and PS increased from early childhood towards adolescence in a population of 474 children aged 5 to 12 years [6]. Mathiowetz [7] studied a sample of 310 men and 318 female adults, aged 20 to 94 and the highest grip strength scores coincided in the 25 to 39 age groups. Though a high correlation was seen between grip strength and age, a low to moderate correlation between was indicated between pinch strength and age [7]. Rantanen et al. [8] pointed out that among healthy 45–68 year old men, GS was highly predictive of functional limitations and disability 25 years later. It was also suggested that good muscle strength in midlife could protect people from old age disabilities [8]. On the other hand, Hanten et al. [9] indicated weak correlation between age and grip-pincha

Neu et al. [11] studied a population comprising of 366 cases of children, adolescents and young adults from 6 year of age to 23 year of age (185 female) and 107 adults (88 female) aged 29 to 40 year for
analyzing the relationship between cross-sectional area of forearm muscles and maximal isometric grip force with age and pubertal stage. He concluded that the increase in GS was similar in both genders and appeared to be independent of sex hormones [11].

It is evident that the relationship between body mass index and strength is controversial: Jette et al., Chong et al. and Kritz-Silverstein et al., Rantanen et al., Pedersen et al. and Butterfeld et al. reported a positive relationship [12–17] while Davis et al. found an inverse link [18]. Still, Apovian et al. reported no relation between body mass index and strength [19].

In this study, we investigated the effects of hand dominance, body mass index and age on grip and pinch strength.

2. Methods

2.1. Subjects

365 healthy male students at the Police School of Malatya, ages ranging from 19 to 33 years (mean 22.7±3 years) took part in the study. Criteria for inclusion were no restriction of movement in the upper limbs and no history of any disease or injury to the upper limbs. All participants gave informed written consent and dominant hand was defined as the one used for writing. 338 participants were RDH and 27 were LDH. No participants reported ambidexterity.

2.2. Tester

Three testers performed all measurements. Prior to the initiation of the study, a pilot study was conducted in order to allow the testers to become familiar with the standard procedure of measurements as well as the use of the instruments. An assistant recorded all the data from the dynamometers and pinchmeters. The data were not revealed to the subjects or the testers.

2.3. Instrumentation

The standard, adjustable-handle Jamar dynamometer (Asirnow Engineering Co., Los Angeles, CA, USA), reported as the most accurate for measuring grip strength was used. For uniformity, it was set at the second handle position for all subjects. However, for borderline acromegaly patients it was set at the third or fourth position which previous subjects informed to be more suitable [20]. For pinch strength, the B&L pinch gauge (B&L Engineering, Tustin, CA, USA) was used. This specific instrument had the highest calibration accuracy of all instruments tested [21].

2.4. Procedure

A brief interview preceded all testing in order to determine if subjects met the above criteria. We performed all measurements in a standardized arm position for hand strength tests as suggested by the American Society of Hand Therapists [22]. Subject sat with his shoulder adducted and neutrally rotated, elbow flexed at 90° and the forearm and wrist in neutral position. Subject was instructed to take two to three seconds to reach the maximum effort and then verbal encouragement was given consistently throughout all measurements. For each strength test the scores of three successive trials recorded for each hand. The highest grip and pinch strength for each hand was used for analysis. The trials for each measurement were separated by a rest of at least one minute to minimize fatigue. Body
weight and height were measured during the exam and values were expressed as kilograms and centimeters, respectively. To calculate BMI, height was converted into meters (BMI = weight/height^2).

2.5. Data analysis

All statistical analyses were performed with SPSS for Windows version 10.0. Unpaired t test was used to determine the effects of hand dominance, body mass index and age on the grip and pinch strength task. The level of significance was set at p = 0.05. Pearson correlation test was used for testing the correlation between the variables. Each test was considered separately. The data were analyzed with all participants included, then separately, for right- and then left-hand dominant participants.

3. Results

Descriptive statistics for the strength measures about the group presented on Table 1. Table 2 summarizes the dominance-based comparison of grip and pinch strength. Although the GS of the DH was slightly stronger then the NDH (by 2.4%) when DH was also the right hand, this discrepancy was more evident when the left hand was the DH (11.2%). With respect to PS, the strength of DH was stronger then NDH for both hands but the difference failed to reach significance. Tables 3 and 4 summarize the correlations of BMI, weight, height and age with the GS and PS.

4. Discussion

Our study group was limited to 365 apparently healthy young male adults (age range 19–33 years).
One handicap was the lack of a female study group. However, Neu et al. have concluded that the increase in GS was similar in both genders and appeared to be independent of sex hormones [11].

There was a good statistically significant relation between ages and grip strength especially for RDH, in agreement with the Mathiowetz et al. and Ager et al. studies [6,7]. The lack of a significant relation between ages and pinch strength was supported by the Ager et al., Hanten et al. and the Lowe studies [6-10] (Tables 3,4).

Table 5 summarizes a number of comparative studies relating to GS and PS. In some studies the authors concluded that the DH was just stronger than the NDH and thus the hands could be regarded as having equiv­alent grip strength should be considered equivalent in both hands [27]. The present study points to the opposite supporting the ‘rule’ in left handed persons only. Interestingly in a number of studies NDH was found to be stronger than the DH [27-30].

With respect to the lack of relationship between body mass index and strength, our results are in agreement with those of Apovian et al. [19] and in variance with those by Jette et al. [12], Chong et al. [14], Kritz-Silverstein et al. [13], Rantanen et al. [15] Pedersen et al. [16] and Davis et al. [18].

5. Conclusion

No correlation was found between the BMI hand strength measures. The rule which states that “the dominant hand is approximately 10% stronger than the non-dominant hand” was found to be valid for left handed persons only, otherwise GS and PS should be considered equivalent in both hands. This difference may be attributed to the fact that the world we live is designated more to suit right handedness. As a result the left handed people exercise their DH more often for daily activities. Thus the finding relating to the superiority of the left hand in LDH people probably reflects the overuse imposed on this select group.

References


